## Lecture 4

Binary Arithmetic

## Binary Arithmetic - Addition

## -Subtraction

## -Complements - 1's

and 2's

## Binary Addition

(a)
(b) 0
$+1$
(c) $\begin{array}{r}1 \\ +0 \\ \hline 1 \\ \hline\end{array}$
(d) 1

Carry Bit

## Binary Addition Examples

(a) 1011
(b) $\mathbf{1 0 1 0}$
(c) 1011
+1100
10111
$+100$
$+101$
1110
10000
(d) 101
$+1001$
1110
(e) $\begin{array}{r}10011001 \\ +\quad 101100 \\ \hline 11000101 \\ \hline\end{array}$

## Binary Complement <br> $\mathbf{I}^{1 \mathrm{~s} \text { Complement) Operation }}$ <br> $0 \rightarrow 1$

Example

## Two's Complement

The Two's complement of a binary number is obtained by first complementing the number and then adding 1 to the result. 1001110
$0110001 \longleftarrow$ One's Complement $+\quad 1$
$0110010 \Longleftarrow$ Two's Complement

## Binary Subtraction

Binary subtraction is implemented by adding the Two's complement of the number to be subtracted.
Example

$$
\begin{aligned}
& 1101 \\
& -1001
\end{aligned}
$$



If there is a carry then it is ignored. Thus, the answer is 0100.

## Basic Digital Arithmetic

- Signed Binary Number: A binary number of fixed length whose sign (+/-) is represented by one bit (usually MSB) and its magnitude by the remaining bits
- Unsigned Binary Number: A binary number of fixed length whose sign is not specified by a bit. All bits are magnitude and the sign is assumed +.


## Signed Binary Numbers

- Sign Bit: A bit (usually the MSB) that indicates whether a number is positive(=0) or negative (=1).
- Magnitude Bits: The bits of a signed binary number that tell how large it is in value.
- True Magnitude Form: A form of signed binary whose magnitude bits are the
TRUE binary form (not complements).


## Signed Binary Numbers

- 1s Complement: A form of signed binary in which negative numbers are created by complementing all bits.
- 2s Complement: A form of signed binary in which the negative numbers are created by complementing all the bits and adding a 1 ( 1 s Complement +1 ).


## Unsigned Binary Arithmetic

- Sum: Result of an Addition Operation of two (or more) binary numbers (operands).
- Carry: A digit (or bit) that is carried over to the next most significant bit during an N Bit addition operation.
- The carry bit is a 1 if the result was too large to be expressed in N bits.


## Basic Rules (Unsigned)

- One Bit Unsigned Addition

| $0+0$ | $=$ | 0 | 0 |
| ---: | :--- | ---: | :--- |
| $1+0$ | $=$ | 0 | 1 |
| $1+1$ | $=$ | 1 | 0 |
| CIN $A_{1}^{\uparrow} \mathrm{B}^{\uparrow}$ |  |  |  |
| COUT SUM |  |  |  |

## True Magnitude

## Form <br> - 5 Bit Numbers Negative $=S=1$



## 2's complement of a binary number:

## - Take the 1's complement of the number <br> - Add 1 to the least-significant-bit position

| 101101 | binary equivalent of 45 |
| :--- | :--- |
| 010010 | complement each bit to form 1's complement |
| $+\quad 1$ | add 1 to form 2's complement |
| 010011 | 2's complement of original binary number |

## Representing signed numbers using 2's complement form

- If the number is positive, the magnitude is represented in its positional-weighted binary form, and a sign bit of 0 is placed in front of the MSB.
- If the number is negative, the magnitude is represented in its 2's complement form, and a sign bit of 1 is placed in front of the MSB.


## example



## Example

- Represent each of the following signed decimal numbers as a signed binary number in the 2's-complement system. Use a total of five bits including the sign bit.
(a) +13 (b) -9 (c) +3 (d) -2 (e) -8


## Addition in the 2's-complement system

- Case I: Two Postive Numbers.

| $+9 \rightarrow 01001$ (augend) |
| :--- |
| $+4 \rightarrow 00100$ (addend) |
| 0 ( 1101 (sum $=+13)$ |

Sign bits

## Addition, cont.

- Case II: Positive Number and Smaller Negative Number
$+9 \rightarrow 0001$ (augend)
$-4 \rightarrow 11100$ (addend)
$1 \begin{gathered}100101 \\ \begin{array}{c}\text { This (carry is dist } \\ \text { oiol(sum }=+5)\end{array}\end{gathered}$


## Addition, cont.

- Case III: Positive Number and Larger Negative Number

Negative sign bit<br>$-9 \rightarrow 10111$<br>$+4 \rightarrow 00100$<br>11011 (sum =-5)

## Addition, cont.

- Case IV: two negative Numbers
$-9 \rightarrow 10111$
$-4 \rightarrow 11100$
110011

This carry is disregarded; the result is
10011(sum =-13)

## Negative Result

## Example

- 2s Complement Negative Result (65-80)

$$
\begin{array}{rr}
+65= & 01000001 \\
-80=11010000(2 \mathrm{~s} \mathrm{C.}) & 1000001 \\
& \begin{array}{r}
1110001 \\
+0000 \\
\text { Invert }
\end{array} \\
\text { Add 1 } & +\begin{array}{r}
1111
\end{array} \\
& +\quad 1
\end{array}
$$

Final Result $=-15 \quad 00001111=15($ Neg. $)$

## Addition, cont.

- Case V: Equal and Opposite Numbers

\author{

$-9 \rightarrow 10111$ <br> | +9 | 0 | 1001 |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 0000 | <br> Disregard; the result is <br> 0000(sum $=+0$ )

}

## Subtraction in the 2's-complement System

- The procedure for subtracting one binary number(the subtrahend) from another binary number(the minuend)
- Negate the subtrahend. This will change the subtrahend to its equivalent value of opposite sign.
- Add this to the minuend. The result of this addition will represent the difference between the subtrahend and the minuend.

Addition and Subtraction of BCD and Excess-3 Code

## Unsigned Numbers BCD Addition

Use binary arithmetic to add the BCD digits:

| 8 | 1000 | Eight |
| ---: | ---: | :--- |
| +5 | +0101 | Plus 5 |
| $\frac{+5}{13}$ | is $13(>9)$ |  |


| 3 |
| :--- |
| +5 |
| 8 OK (<9) |

If result is $>9$, it must generate a carry and be corrected!
To correct the digit, add 0110 in the result.

| 8 | 1000 | Eight | We try to avoid subtraction! |
| ---: | :---: | :--- | :--- |
| $\frac{+5}{13}$ | $\frac{+0101}{1101}$ | Plus 5 | (is $>9)$ |
| Replacing it with addition! |  |  |  |

The adder circuit utilizes the resulting carry bit by sending it as carry-in to the next digit

Add $2905_{B C D}$ to $1857_{B C D}$ showing carries and digit corrections.


Chapter 1

## Excess-3 Code

A BCD Code formed by adding 3 (0011) to its true 4-bit binary value.
? Excess-3 is a self-complementing code:
? A negative code equivalent can be found by inverting the binary bits of the positive code
? Inverting the bits of the Excess-3 digit yields
9's Complement of the decimal equivalent.
Example : Excess -3 code of decimal 4 is 0111. ( $0100+0011=$ 0111)
(4) $=0111$
$(-4)=1000$ (inverting the bits) which is Excess -3 code of decimal 5.

It is 9 's complement of the decimal equivalent. (9-4=5)

Excess-3 Examples
回 $3=0011+0011=0110=6$ in E3.
回 $1=0001+0011=0100=4 \mathrm{in} \mathrm{E3}$.
? If we complement $1=1011$ in E3, this
is the code for an 8.
[9's Complement of $1=(9-1)=8$ (SelfComplement)

## Assignment- 2

- Perform addition and subtraction using 2's complement:-
- 10100001
- 10000111

